Category Archives: AMOS

mô hình SEM, CFA, AMOS

Công cụ Stats Tools Package dùng để tính độ tin cậy tổng hợp và phương sai trích tự động

Giới thiệu

Công cụ Stats Tools Package dùng để tính độ tin cậy tổng hợp và phương sai trích tự động: Đây là một công cụ excel miễn phí phục vụ học tập được giới thiệu trên trang http://statwiki.kolobkreations.com (Supported by the Doctor of Management Program at Case Western Reserve University and by Brigham Young University)

Khi thực hiện phân tích CFA với AMOS, các bạn sẽ phải tính được các chỉ số CR, AVE. Cách tính thủ công đã được nhóm MBA Bách Khoa giới thiệu trong các bài viết trước đây, bài này nhóm sẽ giới thiệu cách tính tự động, bạn chỉ cần 1 phút là hoàn thành tính toán chỉ số độ tin cậy tổng hợp CR và phương sai trích AVE như hình bên dưới.

Các bước thực hiện tính toán độ tin cậy tổng hợp và phương sai trích tự động

Bước 1:

Các bạn thực hiện chạy CFA xong và ra được kết quả CFA, ví dụ như sau:

Bước 2

Các bạn tải file hỗ trợ tính độ tin cậy tổng hợp và phương sai trích tự động Stats Tools Package.xlsm

Bước 3

Bật file vừa tải lên, nếu có bị hỏi Macros have been disabled thì chọn Enable content nhé

Ngoài ra nếu có bị hỏi gì nữa thì cứ chọn yes,ok, enable hết luôn để chạy được.

Bước 4:

Trong sheet ValidityMaster có nút màu đỏ có nội dung là Paste Correlations Table into A1 and Standardized Regression Weights Table into F1, then click me.

Nghĩa là mình sẽ copy 2 bảng Correlation và dán vào ô A1, copy bảng Standardized Regression Weights dán vào ô F1, sau đó nhấn nút đỏ, để là được việc này ta lần lượt làm như sau:

Hiển hiện kết quả CFA xong bấm vào Estimate-Scalars-Correlations, sau đó bấm chọn copy và dán vào ô A1

Tiếp tục bấm vào Estimate-Scalars-Standardized Regression Weights, sau đó bấm chọn copy và dán vào ô F1

 

Sau đó ấn vào nút màu đỏ, kết quả  tính độ tin cậy tổng hợp và phương sai trích tự động sẽ hiện ra như sau:

Như vậy, việc tính độ tin cậy tổng hợp và phương sai trích tự động sẽ làm quá trình làm bài tiện lợi hơn rất nhiều, rút ngắn thời gian tính toán thủ công. Các bạn cần trao đổi cứ liên hệ nhé.

Liên hệ nhóm thạc sĩ Hỗ trợ SPSS.

– SMS, Zalo, Viber:

phone number

– Chat Facebook: http://facebook.com/hoidapSPSS/

– Email:                 hotrospss@gmail.com

Để được:

– Xử lý/ hiệu chỉnh số liệu khảo sát để chạy ra kết quả phân tích nhân tố hội tụ,phân tích hồi quy hồi quy có ý nghĩa thống kê.
– Tư vấn mô hình/bảng câu hỏi/ traning trực tiếp về phân tích hồi quy, nhân tố, cronbach alpha… trong SPSS, và mô hình SEM, CFA, AMOS

 

Hệ số sig. là gì? Hệ số p value là gì?

Hôm nay nhóm MBA Bách Khoa giới thiệu một hệ số cực kì quan trọng trong kiểm định thống kê, đó là hệ số sig. trong phân tích SPSS,hoặc trong các phần mềm như Stata thì đây là hệ số p value.


Nghĩa là hệ số sig. và hệ số p value chỉ là hai cách gọi khác nhau thôi nhé.

  • p-value là viết tắt của probability value.
  • sig. là viết tắt của significance level.

Thường trong các kiểm định thì người ta muốn sig. <5% để các kiểm định có ý nghĩa thống kê. Vậy bài này sẽ đi vào chi tiết các vấn đề này nhé.
Bài này sẽ đi vào các phần chính sau đây:
-Quy trình kiểm định giả thiết thống kê test of significance.
-Ý nghĩa của trị số p value, ý nghĩa hệ số sig.
-Giả thiết là gì?
-Giả thiết vô hiệu, giả thuyết không(H0)) là gì?
-Giả thuyết khác, giả thiết đảo (Ha) là gì?
-Sai lầm loại I và loại II
-Ví dụ về sai lầm loại 1 và 2
-Mức ý nghĩa là gì?

Quy trình kiểm định giả thiết thống kê test of significance

Bước 1: Phát biểu giả thiết vô hiệu( null hypothesis H0). Nhà nghiên cứu cần phải định nghĩa một giả thuyết đảo (null hypothesis), tức là một giả thuyết ngược lại với những gì mà nhà nghiên cứu tin là sự thật.
Bước 2: Nhà nghiên cứu cần phải định nghĩa một giả thuyết phụ (alternative hypothesis), tức là một giả thuyết mà nhà nghiên cứu nghĩ là sự thật, và điều cần được “chứng minh” bằng số liệu.
Bước 3: sau khi đã thu thập đầy đủ những dữ kiện liên quan, nhà nghiên cứu dùng một hay nhiều phương pháp thống kê để kiểm tra xem trong hai giả thuyết trên, giả thuyết nào được xem là khả dĩ. Cách kiểm tra này được tiến hành để trả lời câu hỏi: nếu giả thuyết đảo đúng, thì xác suất mà những dữ kiện thu thập được phù hợp với giả thuyết đảo là bao nhiêu. Giá trị của xác suất này thường được đề cập đến trong các báo cáo khoa học bằng kí hiệu “P value”. Điều cần chú ý ở đây là nhà nghiên cứu không thử nghiệm giả thuyết khác, mà chỉ thử nghiệm giả thuyết đảo mà thôi.
Bước 4: quyết định chấp nhận hay loại bỏ giả thuyết đảo, bằng cách dựa vào giá trị xác suất trong bước thứ ba. Chẳng hạn như theo truyền thống lựa chọn nếu giá trị xác suất nhỏ hơn 5% thì nhà nghiên cứu sẵn sàng bác bỏ giả thuyết đảo. Tuy nhiên, nếu giá trị xác suất cao hơn 5%, thì nhà nghiên cứu chỉ có thể phát biểu rằng chưa có bằng chứng đầy đủ để bác bỏ giả thuyết đảo, và điều này không có nghĩa rằng giả thuyết đảo là đúng, là sự thật. Nói một cách khác, thiếu bằng chứng không có nghĩa là không có bằng chứng.
Bước 5: nếu giả thuyết đảo bị bác bỏ, thì nhà nghiên cứu mặc nhiên thừa nhận giả thuyết phụ.
Theo một qui ước khoa học, tất cả các trị số P thấp hơn 0.05 (tức thấp hơn 5%) được xem là “significant”, tức là “có ý nghĩa thống kê”.

Ý nghĩa của trị số p value,ý nghĩa hệ số sig.

Ý nghĩa của p-value, sig là xác suất của dữ liệu xảy ra nếu giả thiết vô hiệu H0 là đúng. Nghĩa là có bao nhiêu phần trăm của dữ liệu thỏa mãn trị số P. Giả sử P =2%, thì có 2% dữ liệu trong bộ số liệu thỏa mãn điều kiện nào đó.
Lưu ý không được hiểu là : xác suất của giả thiết vô hiệu H0 là 2%, hay P(H0)=2% , mà phải hiểu ở đây là xác suất của dữ liệu xảy ra
Logic của trị số P là chứng minh nghịch đảo, chứng minh phủ định:
-Nếu giả thiết vô hiệu H0 là đúng thì dữ liệu không thể xảy ra.
-Dữ liệu xảy ra
-Nên giả thiết vô hiệu H0 là không đúng.

Vậy giả thiết là gì?

Giả thuyết là một giả sử hay phát biểu về các tham số của tổng thể. Nó có thể đúng hoặc sai

Giả thiết vô hiệu (giả thuyết không (H0)) là gì?

H0 là một phát biểu (đẳng thức hoặc bất đẳng thức) liên quan đến tham số của tổng thể. Giả thiết vô hiệu là giả thiết ngược với giả thiết chính. Thường người ta muốn bác bỏ giả thiết vô hiệu.
Ví dụ: H0: Không có sự khác biệt giữa hai nhóm, không có mối tương quan giữa X và Y.
H0 thường được giả định đúng trong thủ tục kiểm định giả thuyết. Và người ta sẽ cố tìm cách để chứng minh H0 sai. Ví dụ một tuyên bố của nhà sản xuất thường bị nghi ngờ và để trong phát biểu trong H0.

Giả thuyết khác, giả thiết đảo(Ha) là gì?

Ha là phát biểu ngược với H0
Ha được kết luận là đúng nếu H0 bị bác bỏ
Nhà nghiên cứu mong muốn ủng hộ Ha và nghi ngờ H0
Nhiệm vụ của tất cả kiểm định giả thuyết hoặc là bác bỏ H0 hay không bác bỏ H0

Sai Lầm Loại I và Loại II

-Sai lầm loại I là sai lầm của việc bác bỏ H0 khi nó đúng
-Sai lầm loại II là sai lầm của việc không bác bỏ H0 khi nó sai
-Cụ thể đối với bất kỳ một thủ tục kiểm định nào, có thể xảy ra ba kết quả sau: (1) quyết định đúng được thực hiện (nghĩa là, thủ tục chấp nhận giả thuyết đúng và bác bỏ giả thuyết sai), (2) một giả thuyết đúng bị bác bỏ, (3) một giả thuyết sai được chấp nhận. Sai lầm bác bỏ H0 khi nó đúng được gọi là sai lầm loại I. Sai lầm không bác bỏ H0 khi nó sai được gọi là sai lầm loại II. Tương ứng với mỗi loại sai lầm này là một giá trị xác suất. Chúng được gọi là các xác suất sai lầm loại I và loại II và được ký hiệu là P(I) và P(II).

Ví dụ về sai lầm loại 1 và 2

Xem xét một bị cáo trong phiên xử hình sự. Giả thuyết không là bị cáo “vô tội” và giả thuyết ngược lại và bị cáo “có tội”. Giả định là bên bị đơn là vô tội và bên nguyên đơn phải chứng minh được rằng bên bị đơn là có tội, nghĩa là, thuyết phục ban bồi thẩm bác bỏ giả thuyết không. Nếu ban bồi thẩm tuyên bố một người vô tội “không có tội” hoặc một người phạm tội “có tội”, một quyết định đúng đã được thực hiện. Nếu một người vô tội bị tuyên bố có tội, ta phạm phải sai lầm loại I vì giả thuyết đúng đã bị bác bỏ. Sai lầm loại II xảy ra khi một người có tội được tuyên bố trắng án.

Một cách lý tưởng, chúng ta muốn giữ cho cả xác suất sai lầm loại I  P(I) và loại II P(II) càng nhỏ càng tốt bất chấp giá trị của thông số không biết có giá trị là bao nhiêu. Rủi thay, nỗ lực giảm P(I) sẽ tự động kéo theo sự gia tăng trị P(II). Chẳng hạn, trong ví dụ về phiên tòa hình sự, giả sử chúng ta không muốn một người phạm tội nào được tuyên bố trắng án. Các duy nhất để thực hiện được điều này là tuyên bố mọi người có tội. Trong trường hợp này, P(II) = 0, nhưng P(I) = 1 vì chúng ta cũng kết án tất cả những người vô tội.
Tương tự như trên, cách duy nhất để tránh kết án một người vô tội là tuyên bố mọi người vô tội. Trong trường hợp này, chúng ta cũng thả tự do cho tất cả những kẻ phạm tội hay P(II) = 1 và P(I) = 0. 1 Trong thực tế, sự đánh đổi giữa các sai lầm không đến nỗi cực đoan như vậy, tuy nhiên một quy tắc ra quyết định cụ thể sẽ tốt hơn cho một số giá trị của thông số và không tốt cho những giá trị khác.
Thủ tục kiểm định giả thuyết cổ điển là chọn giá trị cực đại cho sai lầm loại I chấp nhận được với người phân tích và sau đó đưa ra quy tắc quyết định sao cho sai lầm loại II là thấp nhất. Trong ví dụ về phiên tòa hình sự, điều này có nghĩa là chọn quy tắc ra quyết định sao cho số lần người vô tội bị kết tội không vượt qua một số phần trăm số lần nào đó (chẳng hạn, 1%) và cực tiểu xác suất người có tội được thả tự do.

Mức ý nghĩa là gì?

Xác suất sai lầm loại I lớn nhất khi H0 đúng được gọi là mức ý nghĩa (còn được gọi là kích thước của kiểm định). Trong ví dụ phiên tòa hình sự, đó chính là xác suất lớn nhất của việc kết án một người vô tội.

Như vậy câu hỏi hệ số sig. là gì? Hệ số p value là gì? đã được trình bài. Các bạn cần trao đổi cứ liên hệ nhé.

Liên hệ nhóm thạc sĩ Hỗ trợ SPSS.

– SMS, Zalo, Viber:

phone number

– Chat Facebook: http://facebook.com/hoidapSPSS/

– Email:                 hotrospss@gmail.com

Để được:

– Xử lý/ hiệu chỉnh số liệu khảo sát để chạy ra kết quả phân tích nhân tố hội tụ,phân tích hồi quy hồi quy có ý nghĩa thống kê.
– Tư vấn mô hình/bảng câu hỏi/ traning trực tiếp về phân tích hồi quy, nhân tố, cronbach alpha… trong SPSS, và mô hình SEM, CFA, AMOS

Quan hệ điều tiết moderation, các loại biến điều tiết moderator, mô hình hóa quan hệ điều tiết

Quan hệ điều tiết Moderation là gì?

Quan hệ điều tiết Moderation mô tả một tình huống trong đó mối quan hệ giữa hai biến số không phải là hằng số mà phụ thuộc vào các giá trị của một biến thứ ba, biến thứ 3 này được gọi là biến điều tiết moderator . Biến điều tiết thay đổi cường độ hoặc thậm chí là hướng của mối quan hệ giữa hai biến trong mô hình.

Ví dụ quan hệ điều tiết

Như ảnh bên dưới, M là biến moderator, Y1 là biến độc lập, Y2 là biến phụ thuộc. Biến M có thể thay đổi mối quan hệ giữa Y1 đến Y2 trong mô hình.

Nghiên cứu trước đây đã chỉ ra rằng mối quan hệ giữa sự hài lòng của khách hàng và lòng trung thành của khách hàng có sự khác biệt phụ thuộc vào thu nhập của khách hàng. Chính xác hơn, thu nhập có tác động tiêu cực rõ rệt lên mối quan hệ hài lòng – lòng trung thành. Thu nhập càng cao, mối quan hệ giữa sự hài lòng và lòng trung thành càng yếu. Nói cách khác, thu nhập đóng vai trò biến điều tiết, giải thích cho tính không đồng nhất trong mối liên kết giữa hài lòng-lòng trung thành. Do đó, mối quan hệ này không giống nhau cho tất cả khách hàng mà thay vào đó khác nhau tùy thuộc vào thu nhập của họ. Như vậy, phân tích điều tiết được xem như là một phương tiện để giải thích tính không đồng nhất trong dữ liệu.

Các loại biến điều tiết

Có hai loại biến điều tiết, đó là biến điều tiết dạng phân loại và biến điều tiết liên tục.

  • Biến điều tiết dạng phân loại khi mà biến đó dạng định danh, ví dụ Nam/Nữ. Khi biến điều tiết dạng phân loại, lúc đó bộ dữ liệu được chia ra theo các nhóm của biến điều tiết là các bộ dữ liệu nhỏ hơn. Lúc đó kĩ thuật phân tích đa nhóm multigroup được áp dụng.
  • Biến điều tiết liên tục khi đó là biến dạng định lượng liên tục,ví dụ thu nhập, độ tuổi( lưu ý không phải là các NHÓM thu nhập, NHÓM tuổi). Khi biến điều tiết dạng liên tục, cũng có một kĩ thuật multigroup, đó là sẽ chia biến này thành các nhóm, dựa trên trung bình hoặc trung vị( mean and median splits). Lúc đó biến được chia này mặc nhiên trở thành biến điều tiết phân loại, và ta áp dụng phân tích đa nhóm multigroup để phân tích biến điều tiết

Các biến điều tiết có thể có mặt trong các mô hình cấu trúc theo các dạng khác nhau. Chúng có thể đại diện cho các đặc điểm quan sát như giới tính, tuổi tác hoặc thu nhập. Nhưng chúng cũng có thể thể hiện thông những đặc điểm không thể quan sát được như thái độ rủi ro, thái độ đối với một thương hiệu . Biến điều tiết có thể được đo bằng một hoặc nhiều câu hỏi nhỏ sử dụng thang đo reflective hoặc formative. Sự khác biệt quan trọng nhất liên quan đến thang đo của biến điều tiết, là thang đo phân loại categorical và thang đo liên tục continuous .

Biến điều tiết phân loại:

Về biến điều tiết phân loại categorical, một ví dụ là biến giới tính, có hai loại Nam/Nữ ( được mã hóa 0/1). Cũng có thể có biến điều tiết 3-4 loại, ví dụ các mức độ tuổi: <30 tuổi, 30-40 tuổi, trên 40 tuổi ( được mã hóa 0/1/2). Trong hầu hết các trường hợp, các nhà nghiên cứu sử dụng biến điều tiết phân loại để chia bộ dữ liệu thành hai hoặc nhiều nhóm và ước tính riêng từng mô hình cho từng nhóm dữ liệu. Cách tiếp cận này cung cấp một kết quả hoàn chỉnh hơn về ảnh hưởng của biến điều tiết đối với kết quả phân tích.

Biến điều tiết liên tục:

Trong nhiều trường hợp, các nhà nghiên cứu có biến điều tiết liên tục mà họ tin có thể ảnh hưởng đến sức mạnh của một mối quan hệ cụ thể giữa hai biến tiềm ẩn. Ví dụ, giả thuyết rằng mối quan hệ giữa sự hài lòng và lòng trung thành bị ảnh hưởng bởi thu nhập của khách hàng. Chính xác hơn, có thể đưa ra giả thuyết rằng mối quan hệ giữa sự hài lòng của khách hàng và lòng trung thành của khách hàng yếu hơn đối với các khách hàng có thu nhập cao và mạnh mẽ hơn cho các khách hàng có thu nhập thấp. Hiệu ứng của biến điều tiết như vậy sẽ chỉ ra rằng mối quan hệ lòng trung thành hài lòng thay đổi, tùy thuộc vào mức thu nhập. Nếu hiệu ứng điều tiết này không có mặt, chúng ta sẽ giả định rằng sức mạnh của mối quan hệ giữa sự hài lòng và lòng trung thành là không đổi theo thu nhập.

Mô hình hóa quan hệ điều tiết

Để hiểu được cách các hiệu ứng điều tiết được mô hình hoá, hãy xem xét mô hình đường dẫn như sau:

Thu nhập đóng vai trò là biến điều tiết (M), ảnh hưởng đến mối quan hệ giữa sự hài lòng của khách hàng (Y1) và lòng trung thành của khách hàng (Y2). Hiệu ứng điều tiết (p3) được biểu thị bằng một mũi tên chỉ vào hiệu ứng p1 liên kết Y1 và Y2. Hơn nữa, khi bao gồm hiệu ứng điều tiết trong mô hình, cũng có mối quan hệ trực tiếp (p2) từ biến điều tiết đến biến phụ thuộc nội sinh. Mối quan hệ p2 này rất quan trọng (và là thường xuyên bị bỏ sót) vì nó kiểm soát tác động trực tiếp của biến điều tiết lên biến phụ thuộc nội sinh. Nếu đường dẫn p2 bị bỏ qua, hiệu ứng của M trên mối quan hệ giữa Y1 và Y2 (tức là p3) sẽ bị thổi phồng.

Mô hình này diễn giải như sau: Y2   =   ( p1   +   p3*Μ )* Y 1   +   p2*M

Như vậy ảnh hưởng của Y1 lên Y2 không chỉ phụ thuộc vào cường độ của tác động đơn p1 mà còn trên tích số của p3 và M. Để hiểu cách biến điều tiết được tích hợp trong mô hình, chúng ta cần viết lại phương trình như sau:

Y2=p1*Y1+p2*Μ+p3*(Y1*Μ)

Cụm tương tác interaction term là gì?

Phương trình  Y2=p1*Y1+p2*Μ+p3*(Y1*Μ)

Cho thấy mô hình có biến điều tiết cần mô tả ra ảnh hưởng của biến độc lập ngoại sinh (tức là, p1*Y1), ảnh hưởng của biến điều tiết ( p2*M), và tích của p3*(Y1*M), còn được gọi là cụm tương tác interaction term. Kết quả là, hệ số p3 biểu thị hiệu ứng p1 thay đổi như thế nào khi biến điều tiết M tăng hoặc giảm theo một đơn vị độ lệch chuẩn .

Như có thể thấy, mô hình bao gồm cụm tương tác interaction term như một biến tiềm ẩn bổ sung bao gồm tích của biến tiềm ẩn ngoại sinh Y1 và biến điều tiết M. Do cụm tương tác interaction term này, các nhà nghiên cứu thường tham khảo các hiệu ứng tương tác interaction effects khi mô hình hóa biến điều tiết moderator .

Khi diễn giải kết quả phân tích điều tiết, mối quan tâm chính là mức ý nghĩa significance của cụm tương tác interaction term. Nếu mối quan hệ của interaction term lên biến phụ thuộc nội sinh có ý nghĩa thống kê, kết luận rằng biến M có tác động điều tiết có ý nghĩa thống kê đối với mối quan hệ giữa Y1 vàY2. SmartPLS sẽ dùng bootstrapping để đánh giá quan hệ điều tiết này. Trong trường hợp tác động điều tiết có ý nghĩa thống kê, bước tiếp theo là xác định sức mạnh của hiệu ứng điều tiết

So sánh biến điều tiết và biến trung gian

Như vậy, biến điều tiết tương tự như biến trung gian ở chỗ biến số thứ ba (tức là, biến trung gian hoặc biến điều tiết) ảnh hưởng đến sức mạnh của mối quan hệ giữa hai biến tiềm ẩn. Sự khác biệt giữa hai khái niệm là biến điều tiết không phụ thuộc vào biến độc lập ngoại sinh. Ngược lại, với biến trung gian, có hiệu ứng trực tiếp từ biến độc lập ngoại sinh đến biến trung gian.

Tóm  lại, nhóm Thạc Sỹ QTKD Bách Khoa đã giới thiệu về Quan hệ điều tiết moderation, các loại biến điều tiết moderator, mô hình hóa quan hệ điều tiết. Khi xử lý bên phần mềm AMOS thì áp dụng kĩ thuật phân tích đa nhóm multigroup để xử lý. Còn phần mềm SmartPLS thì áp dụng chức năng MGA Multi-Group Analysis để thực hiện.

Các bạn khi xử lý số liệu gặp vấn đề khó khăn cứ liên hệ nhóm nhé:

Liên hệ nhóm thạc sĩ Hỗ trợ SPSS.

– SMS, Zalo, Viber:

phone number

– Chat Facebook: http://facebook.com/hoidapSPSS/

– Email:                 hotrospss@gmail.com