Nay nhóm MBA đăng loạt bài về mô hình SEM của tác giả Phạm Đức Kỳ – (Nguồn: mba-15.com) để cung cấp thêm kiến thức cho các bạn học viên quan tâm. Loạt bài này gồm 5 phần.
Phần thứ 1:
1. Giới thiệu tổng quan mô hình mạng (SEM)
Một trong những kỹ thuật phức hợp và linh hoạt nhất sử dụng để phân tích mối quan hệ phức tạp trong mô hình nhân quả là mô hình mạng SEM (Structural Equation Modeling). Mô hình SEM đã được sử dụng rộng rãi trong các lĩnh vực nghiên cứu như tâm lý học (Anderson & Gerbing,1988; Hansell và White, 1991), xã hội học (Lavee, 1988; Lorence và Mortimer, 1985), nghiên cứu sự phát triển của trẻ em (Anderson, 1987; Biddle và Marlin,1987) và trong lĩnh vực quản lý (Tharenou, Latimer và Conroy,1994). Đặc biệt mô hình này cũng được ứng dụng trong rất nhiều mô hình thỏa mãn khách hàng như : ngành dịch vụ thông tin di động tại Hàn Quốc (M.-K. Kim et al. / Telecommunications Policy 28 (2004) 145–159), Mô hình nghiên cứu sự trung thành của khách hàng Dịch vụ thông tin di động tại Việt nam (Phạm Đức Kỳ, Bùi Nguyên Hùng, 2007)…
Mô hình SEM là sự mở rộng của mô hình tuyến tính tổng quát (GLM) cho phép nhà nghiên cứu kiểm định một tập hợp phương trình hồi quy cùng một lúc.
SEM có thể cho một mô hình phức hợp phù hợp với dữ liệu như các bộ dữ liệu khảo sát trong dài hạn(longitudinal), phân tích nhân tố khẳng định (CFA), các mô hình không chuẩn hoá,cơ sở dữ liệu có cấu trúc sai số tự tương quan, dữ liệu với các biến số không chuẩn(Non-Normality) , hay dữ liệu bị thiếu (missing data).
Đặc biệt, SEM sử dụng để ước lượng các mô hình đo lường (Mesurement Model) và mô hình cấu trúc (Structure Model) của bài toán lý thuyết đa biến.
Mô hình đo lường chỉ rõ quan hệ giữa các biến tiềm ẩn (Latent Variables) và các biến quan sát (observed variables).Nó cung cấp thông tin về thuộc tính đo lường của biến quan sát (độ tin cậy, độ giá trị).
Mô hình cấu trúc chỉ rõ mối quan hệ giữa các biến tiềm ẩn với nhau. Các mối quan hệ này có thể mô tả những dự báo mang tính lý thuyết mà các nhà nghiên cứu quan tâm.
Mô hình SEM phối hợp được tất cả các kỹ thuật như hồi quy đa biến, phân tích nhân tố và phân tích mối quan hệ hỗ tương (giữa các phần tử trong sơ đồ mạng) để cho phép chúng ta kiểm tra mối quan hệ phức hợp trong mô hình. Khác với những kỹ thuật thống kê khác chỉ cho phép ước lượng mối quan hệ riêng phần của từng cặp nhân tố (phần tử) trong mô hình cổ điển (mô hình đo lường), SEM cho phép ước lượng đồng thời các phần tử trong tổng thể mô hình, ước lượng mối quan hệ nhân quả giữa các khái niệm tiềm ẩn (Latent Constructs) qua các chỉ số kết hợp cả đo lường và cấu trúc của mô hình lý thuyết, đo các mối quan hệ ổn định (recursive) và không ổn định (non-recursive), đo các ảnh hưởng trực tiếp cũng như gián tiếp, kể cả sai số đo và tương quan phần dư. Với kỹ thuật phân tích nhân tố khẳng định (CFA) mô hình SEM cho phép linh động tìm kiếm mô hình phù hợp nhất trong các mô hình đề nghị.
- Công dụng và lợi thế của mô hình mạng (SEM)
- Kiểm định các giả thuyết về các quan hệ nhân quả có phù hợp (FIT) với dữ liệu thực nghiệm hay không.
- Kiểm định khẳng định (Confirmating) các quan hệ giữa các biến.
- Kiểm định các quan hệ giữa các biến quan sát và không quan sát (biến tiềm ẩn)
- Là phương pháp tổ hợp phương pháp hồi quy, phương pháp phân tích nhân tố, phân tích phương sai.
- Ước lượng độ giá trị khái niệm (cấu trúc nhân tố) của các độ đo trước khi phân tích sơ đồ đường (path analysis)
- Cho phép thực hiện đồng thời nhiều biến phụ thuộc (nội sinh).
- Cung cấp các chỉ số độ phù hợp cho các mô hình kiểm định.
- Cho phép cải thiện các mô hình kém phù hợp bằng cách sử dụng linh hoạt các hệ số điều chỉnh MI (Modification Indices).
- SEM cung cấp các công cụ có giá trị về thống kê, khi dùng thông tin đo lường để hiệu chuẩn các quan hệ giả thuyết giữa các biến tiềm ẩn.
- SEM giúp giả thuyết các mô hình, kiểm định thống kê chúng (vì EFA và hồi quy có thể không bền vững nhất quán về mặt thống kê)
- SEM thường là một phức hợp giữa một số lượng lớn các biến quan sát và tiềm ẩn, các phần dư và sai số.
- SEM giả định có một cấu trúc nhân quả giữa các biến tiềm ẩn có thể là các tổ hợp tuyến tính của các biến quan sát, hoặc là các biến tham gia trong một chuỗi nhân quả.
Ngoài ra nhóm hotrospss@gmail.com có các dịch vụ sau:
– Tư vấn mô hình/bảng câu hỏi/ traning trực tiếp về phân tích hồi quy, nhân tố, cronbach alpha… trong SPSS, và mô hình SEM, CFA, AMOS
– Thu thập/Xử lý số liệu khảo sát để chạy ra kết quả có ý nghĩa thống kê.
- Chỉ số MI Modification Indices là gì và tại sao không nên lạm dụng nó để cải thiện độ phù hợp mô hình.
- Quy trình dùng Amos và Spss 7 bước để thực hiện luận văn cao học
- Cách nhập số liệu thẳng từ bảng khảo sát vào SPSS
- Bậc tự do degrees of freedom (df) là gì
- Chỉ số odd trong hồi quy nhị phân, và tại sao nó dùng để dự đoán trong hồi quy nhị phân