Giá trị hội tụ
Giá trị hội tụ là số liệu tổng thể của mô hình đo lường phản ánh, đo lường mức độ mà các chỉ số của một cấu trúc hội tụ, từ đó giải thích phương sai của các items. Nó được đánh giá bằng cách đánh giá phương sai trung bình được trích xuất (AVE) trên tất cả các chỉ số liên quan đến một cấu trúc cụ thể. AVE là giá trị trung bình của bình phương hệ số tải của tất cả các chỉ số liên quan đến một cấu trúc cụ thể.
Quy tắc đối với AVE được chấp nhận là 0.50 hoặc cao hơn. Mức này hoặc cao hơn cho thấy rằng trung bình cấu trúc giải thích 50 phần trăm hoặc hơn phương sai của các chỉ số của nó.
Giá trị phân biệt
Chỉ số này đánh giá mức độ mà một cấu trúc khác biệt với các cấu trúc khác. Nguyên tắc cơ bản của tính hợp lệ phân biệt là đánh giá mức độ duy nhất của các chỉ số của một cấu trúc đại diện cho cấu trúc đó (phương sai được chia sẻ trong cấu trúc đó) so với mức độ tương quan của cấu trúc đó với tất cả các cấu trúc khác trong mô hình (phương sai chung giữa các cấu trúc). Kiểm tra tính hợp lệ phân biệt được thực hiện cho tất cả các cặp cấu trúc trong một mô hình. Sử dụng khái niệm AVE được thảo luận ở trên, tính hợp lệ phân biệt có mặt khi phương sai được chia sẻ trong một cấu trúc (AVE) luôn vượt quá phương sai được chia sẻ với tất cả các cấu trúc khác.
CB-SEM thường dựa vào tiêu chí Fornell – Larcker. Phương pháp Fornell – Larcker là phép so sánh trực tiếp AVE của hai cấu trúc với phương sai chung giữa hai cấu trúc. Ngược lại, với PLS-SEM, phương pháp đánh giá sự phân biệt được khuyến nghị bởi Henseler và cộng sự là tỷ số heterotrait-monotrait (HTMT) của các mối tương quan.
Tiêu chí HTMT được định nghĩa là giá trị trung bình của các mối tương quan của chỉ báo giữa các cấu trúc (tức là tương quan heterotrait-heteromethod) so với giá trị trung bình của các mối tương quan trung bình của các chỉ số đo lường cùng một cấu trúc. Tiêu chí HTMT là ước tính về mối tương quan thực sự giữa hai cấu trúc nếu chúng được đo lường hoàn hảo (tức là nếu chúng hoàn toàn đáng tin cậy). Giá trị HTMT cao cho thấy có vấn đề với giá trị phân biệt. Dựa trên mô phỏng và nghiên cứu trước đó, Henseler et al đề xuất giá trị 0.90 nếu mô hình đường dẫn bao gồm các cấu trúc tương tự về mặt khái niệm (ví dụ: lòng trung thành, sự hài lòng về nhận thức và sự hài lòng về tình cảm). Nói cách khác, giá trị HTMT trên 0.90 cho thấy thiếu giá trị phân biệt. Khi các cấu trúc khác biệt hơn về mặt khái niệm, một giá trị ngưỡng thấp hơn, thận trọng hơn là 0.85 được đề xuất. Cuối cùng, ngoài việc kiểm tra kích thước của giá trị HTMT, các nhà nghiên cứu nên sử dụng quy trình bootstrapping để xác định xem giá trị HTMT có thấp hơn một cách có ý nghĩa thống kê so với số 1 hay không.
Dĩ nhiên tiêu chuẩn Fornell – Larcker vẫn được sử dụng bình thường trong PLS-SEM , chứ không phải bắt buộc HTMT nhé, đây chỉ là 2 cách xài thay thế cho nhau
- Tổng quan phân tích nhân tố khám phá EFA
- Cách đối diện với dữ liệu bị thiếu Missing values khi phân tích dữ liệu
- Cách xử lý lỗi The model is probably unidentified
- Cách kiểm định hệ số R bình phương mô hình tổng thể có khác 0 hay không?
- Bảng câu hỏi và video hồi quy sự tác động của marketing mix lên hành vi truyền miệng