Vấn đề:
Thông thường khi làm luận văn với phương pháp hồi quy thì phân tích nhân tố chia làm hai bước
– Phân tích nhân tố chung cho tất cả các biến độc lập
– Phân tích nhân tố cho biến phụ thuộc
Tuy nhiên khi làm bài dạng mô hình cấu trúc tuyến tính, đa số sẽ chỉ chạy phân tích nhân tố duy nhất một lần đưa vào tất cả các biến.
Vậy tại sao có sự khác nhau như thế, bài này sẽ giải thích theo quan điểm của các nhà khoa học trong ngành nhé.( giáo sư Joseph F. Hair, Jr. University of South Alabama và cộng sự-Trang 135 sách: MULTIVARIATE DATA ANALYSIS EIGHTH EDITION 2018)
Nguyên gốc tiếng Anh:
For example, mixing dependent and independent variables in a single factor analysis and then using the derived factors to support dependence relationships is not appropriate.
Dịch ra là: Trộn biến độc lập và biến phụ thuộc trong một phép phân tích nhân tố đơn lẻ, sau đó sử dụng nhân tố đó để đánh giá các mối quan hệ là không phù hợp.
Giải thích thêm: đối với các mô hình nghiên cứu đã xác định trước đâu là biến độc lập, đâu là biến phụ thuộc. Thì bắc buộc phải chạy riêng phân tích nhân tố cho biến độc lập và biến phụ thuộc. Thực tế thì đây chính là cách chạy mô hình hồi quy thông dụng chúng ta vẫn hay làm.
Vậy trường hợp gom tất cả câu hỏi vào chạy chung phân tích nhân tố là như thế nào?
Như ta thấy, mô hình này rất khó xác định biến nào là biến độc lập, biến nào là biến phụ thuộc, vì các biến quan hệ chằng chịt nhân quả với nhau. Mô hình này còn gọi là mô hình cấu trúc tuyến tính. Phân tích EFA áp dụng cho dạng mô hình SEM này phải chạy chung hết tất cả các biến, để đánh giá được giá trị hội tụ và phân biệt của các thang đo.
Một lưu ý quan trọng khác:
– Trường hợp chạy riêng biến độc lập, biến phụ thuộc: sử dụng phép quay Varimax, với phép trích xuất PCA principal component analysis.
– Trường hợp chạy chung tất cả các biến độc lập, biến phụ thuộc, sử dụng phép xoay promax, phép trích xuất PAF Principal Axis Factoring.
Sở dĩ có sự khác nhau này, do giả định của phép xoay Varimax là các nhân tố không được tương quan với nhau( thường thì nhân tố phụ thuộc có tương quan với nhân tố độc lập)Varimax rotation is orthogonal rotation in which assumption is that there is no intercorrelations between components.
Kết luận khi nào chạy phân tích nhân tố chung hay riêng cho biến độc lập và phụ thuộc
– Đối với mô hình hồi quy tuyến tính có 1 biến phụ thuộc: chạy efa 2 lần riêng biệt: lần 1 cho biến độc lập, lần 2 cho biến phụ thuộc.
– Đối với mô hình cấu trúc tuyến tính SEM, mô hình phức tạp, có nhiều hơn 1 biến phụ thuộc: chạy chung efa duy nhất 1 lần cho tất cả các biến.
Bạn cứ trao đổi thêm với nhóm ở đây, hoặc comment bên dưới nhé
Liên hệ nhóm thạc sĩ Hỗ trợ SPSS.
– SMS, Zalo, Viber:
– Chat Facebook: http://facebook.com/hoidapSPSS/
– Email: hotrospss@gmail.com
- Common method bias là gì?
- Hiển thị Font Tiếng Việt trong SPSS ( cả hai loại UNICODE và VNI)
- Bậc tự do degrees of freedom (df) là gì
- Kiểm định Chi bình phương Chi Square test: cách thực hiện, cách đọc kết quả, cách thao tác tính toán bằng tay thay vì dùng SPSS
- Cách xử lý nhân tố có 1 biến quan sát trong SEM